
Software Requirements Specification (SRS)

Tic-Tac-Math

 

Team: 6
Authors: Jake Correnti, Scott Landry, Mildred Kumah, Al-Amin Muhammad,
Paschal Ojatabu
Customer: Elementary School or Parent
Instructor: Dr. James Daly

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Table of Contents
1. Introduction

1. Purpose
2. Scope
3. Definitions, Acronyms, and Abbreviations
4. Organization

2. Overall description
1. Product Perspective
2. Product Functions
3. User Characteristics
4. Constraints
5. Assumptions and Dependencies
6. Apportioning of Requirements

3. Specific Requirements
4. Modeling Requirements
5. Prototype

1. How to Run Prototype
2. Sample Scenarios

6. References
7. Point of Contact

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



1 Introduction

This Software Requirements Specification (SRS) document provides a detailed
description of the requirements for Tic-Tac-Math. The purpose of this document is to
present a comprehensive outline of the functional and non-functional requirements,
intended to guide the development team and stakeholders throughout the development
process of the software application.

1.1 Purpose

The purpose of this document is to describe the software system that is being
developed. Here, we aim to clearly define all the functional and non-functional
requirements for Tic-Tac-Math. It stands as both a list of requirements and a guideline for
development for all parties involved in the development of Tic-Tac-Math.

1.2 Scope

Tic-Tac-Math is an educational math-based Tic-Tac-Toe game designed
specifically for students at a 4th grade math level. The game is 2 player and the player
must answer a math problem correctly to claim a space. All problems are randomly
generated and will focus on multiplication. The main benefits of the game include
reinforcing classroom learning, enhancing students’ problem-solving skills, and making
learning a fun and interactive experience. This project aims to give teachers a fun option
to utilize and give their students an engaging tool for students to learn their multiplication
tables more fluently.

1.3 Definitions, acronyms, and abbreviations

- GUI: Graphical User Interface
- NIC: Network Interface Controller
- UI: User Interface
- HTML: HyperText Markup Language
- CSS: Cascade Style Sheet
- DNS: Domain Name System
- HTTP: HyperText Transfer Protocol
- TLS: Transport Layer Security
- TCP/IP: Transmission Control Protocol/Internet Protocol

- Actor: entities that interact with the system
- Use Case: represents the goals that an actor might want
- Composition: when an object “is made of” another object

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



- Tic-Tac-Toe: classic two-player strategy game in which participants take turns
marking a 3x3 grid with their chosen symbol, typically "X" or "O," with the
objective of forming a row, column, or diagonal of three matching symbols.

- Tic-Tac-Math: game inspired by tic-tac-toe, but before a player can mark the “X”
or “O” symbol on their board, they need to correctly solve a math problem.

1.4 Organization

This first section of the SRS document provides an introduction to Tic-Tac-Math
as well as provides an overview of this document. Section 2 details the overall description
of the project by outlining the functionality of Tic-Tac-Math. Its purpose is to describe in
detail how the game will look and behave. Section 3 focuses on specific requirements for
the game and provides a list of all the game needs. Section 4 contains various models and
diagrams that represent the game’s structure and behavior. These diagrams include use
case diagrams, sequence diagrams, and class diagrams. Section 5 goes into detail on the
prototype that was developed and also details some sample scenarios a user might
encounter. Section 6 contains references to sources used for the game and surrounding
system. Finally, section 7 contains the point of contact.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



2 Overall Description

The information in this section of the document will provide a general description
of the software. It will provide a Product Perspective, which puts the product in relation
to other related products or projects. It then goes over Product Functions, which
summarizes the primary functions of Tic-Tac-Math. Subsequently, this section discusses
User Characteristics, which describes the characteristics of the eventual user of the
product that will affect the specific requirements. Additionally, General Constraints will
be specified, which includes general descriptions of any other item that will limit our
options for designing the game. The last two aspects of this section include Assumptions
and Dependencies as well as Apportioning of Requirements. Assumptions and
Dependencies goes into detail regarding each factor that affects the requirements that are
stated in this document. Finally, Apportioning of Requirements provides information on
possible features that will be released in future versions of the software.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



2.1 Product Perspective

Tic-Tac-Math is a website where two students can battle against each other in
tic-tac-toe. However, they have to answer a math problem correctly in order for their
symbol to be placed on the board. The students can play the game anywhere they can get
access to a computer with an internet connection. Tic-Tac-Math provides a fun way for
students to practice their math skills and be competitive with one another. Although it is a
way for students to practice their math, it is not a formal way for instructors to test
students on their skills.

The system’s GUI, in the form of a website, should adhere to industry standards
so the UI looks and behaves the same across multiple platforms and browsers. The
system requires the underlying host hardware to have the ability to connect to the Internet
through a NIC. The system also requires the host to have access to a keyboard and mouse.
These may be integrated like those of a laptop, or externally connected via bluetooth or a
cable. Additionally, the system requires the host machine to have a graphical display in
order to display the game to the user. In regards to software constraints, the system
requires that the host machine be running an operating system with a desktop
environment installed. Within this operating system, it is required that an internet browser
be installed. The internet browser must be able to render HTML and CSS while also
running JavaScript code in the background. Finally, the system must also take advantage
of protocols such as DNS, HTTP, TLS, and TCP/IP in order to interface with the Internet.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



2.2 Product Functions

The initial major function the software will have is to present the users with a
landing page when they first navigate to the website. This will provide the users with a
description of Tic-Tac-Math and a way to start a new game.

Once the user starts a new game, the software displays the tic-tac-toe board to the
users. This is the board the two players will be interacting with when they play against
one another. Above the game board the software will display which player, X or O, will
make the next move. Tic-Tac-Math will allow the player who’s up next to select an open
square on the board. Once the open square is selected, the software will generate a
random math problem who’s multiplicand and multiplier are randomly generated
numbers between zero and ten. The software will provide an input box for the player to
submit their answer to the question. If the user’s provided answer is correct, the software
will place the respective symbol on the board and the next player can make their move.
However, if the player submitted the wrong answer, the software will generate new math
problems until a correct answer is given. After every move, the game will determine if
there is a winner or a tie. When the game is over, the software will provide the users the
chance to reset the board and have a rematch or go back to the landing page.

Learning your multiplication tables can be an incredibly tedious process, often
involving frequent repetition of the same problems. However, with Tic-Tac-Math, we aim
to help educate students on their multiplication tables with a fun, interactive Tic-Tac-Toe
style game that allows them to compete with their classmates in the process.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



2.3 User Characteristics

Given that Tic-Tac-Math is a website, it is expected that the users of the software
understand how to navigate the internet and interact with websites within an Internet
Browser. Due to the nature of the game and how user input is recorded, it is expected that
the user will know how to use a keyboard and mouse. Additionally, it is expected that
users know how to play the game of Tic-Tac-Toe. Tic-Tac-Math also expects the user will
have at least a third grade level education, preferably fourth grade or above. Specifically,
the education level expects basic reading and multiplication skills in order to successfully
use the software.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



2.4 Constraints

Based on the possible constraints from the IEEE SRS document, there are no
additional constraints with regards to the software. These constraints included regulatory
policies, hardware limitations, interfaces to other applications, parallel operation, audit
functions, control functions, higher-order language requirements, signal handshake
protocols, criticality of the application, and safety and security considerations.

In regards to regulatory policies, there are no governmental restrictions that the
developer would have to take into consideration when writing the software. There are also
no additional hardware constraints the developer needs to take into consideration when
implementing the system, such as a low amount of memory or disk space. Interfacing
with other applications is not within the scope of Tic-Tac-Math and should not be a
concern for the developers. Tic-Tac-Math, in its current state, is a synchronous piece of
software and does not require parallel operation in order to perform as intended. Due to
the nature of the game and the fact that there is effectively “no” backend with zero data
persistence, there is nothing to log for a future audit. Any failures in the system would
have nowhere to be logged, therefore, there is no central location where data could be
accessed and therefore audited. Additionally, the developer does not need to be concerned
with signal handshake protocols such as TLS, HTTP, or TCP/IP as that is all handled by
the Web Browser. The fundamental structure of the software involves no forms of
persistence or interaction with other applications on the host system. Since the software is
completely enclosed and hosted via a third party, any issues regarding data a malicious
actor might try to gain is futile. There is absolutely no data the actor can access that will
prove useful, and additionally, if the actor were to gain access to the system, it would be
through the fault of the Web Browser or other third party application that is outside the
scope of the developers working on Tic-Tac-Math.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



2.5 Assumptions and Dependencies

One dependency of the system is the device it’s being run on has access to the
Internet via a Web Browser. However, if this is not available then the current document
will require changes.

An additional dependency of the system is the hardware running the game is using
a mouse and keyboard. If a mouse and keyboard are not being used, the current document
will also have to be adjusted to account for that. If there is no way for the user to provide
input to the software, then the software is unusable.

Also, the system depends on the user’s host operating system having a desktop
environment installed. Without a desktop environment, the software is not usable.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



2.6 Apportioning of Requirements

Based on negotiations with customers, there were a few requirements that were
determined to be beyond the scope of the current project and they may be addressed in
figure version/releases. One of the requirements that was discussed was the ability for the
two players to be on different machines rather than the same one. This was determined
out of scope because the game in its current state still completes the goal of having a fun
way to practice your math skills. This addition would require a revamp of the backend,
therefore it will be addressed in figure versions/releases.

An additional suggestion that was made by customers was to have a way to store
students’ math accuracy after each game so the instructors can go through and look at all
of the statistics for their students. Although we felt that this was a good idea, it was not a
requirement in order to get the main functionality of the software completed.
Additionally, this new feature would require similar backend changes to the requirement
above, therefore it was decided to address this requirement in a future version or release.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



3 Specific Requirements

1. Game should have 4th grade (10 years old) math students who are currently
studying basic multiplication tables be the core demographic

2. User Interface must provide the user the ability to start a new game
3. User interface must have a screen displaying the tic-tac-toe board

a. The user interface must display who’s turn it is
4. The user interface must display a simple math problem on the screen (two

numbers between 0-10 multiplied together) and the user will be provided an input
area to submit their answer to the problem

a. Players who answer correctly are given the opportunity to make a single
move on the tic-tac-toe board

b. Players who fail to answer a question correctly will be given a new
problem

c. For every question a user answers correctly, the user interface will display
their accuracy

5. Once a user has successfully won the game of tic-tac-toe, the user interface will
display who the winning user is

6. The user interface must provide a way for the user to do a rematch or reset the
board

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



4 Modeling Requirements

Use Case Diagram

Use Case diagrams are a type of behavioral diagram that organizes behaviors of
the system. Use cases are user goals, which are high-level services of the system. Use
case diagrams are done from the point of view of an external actor.

The notation of a Use Case diagram is fairly straightforward. An actor is
represented by a stick figure. A use case is represented by a labeled oval. A solid line is
used to connect actors to the use cases that they want to achieve. Around the edge of the
system, you can find a labeled box called the system boundary. We use <<includes>> and
<<extends>> to signify that use cases are interacting with other use cases. An arrow
marked with an <<includes>> means that there is a sub-goal that needs to get
accomplished. On the other hand, an arrow marked with an <<extends>> means there is a
special case that modifies the goal.

In regards to our specific Use Case diagram displayed below, we have a single
actor referred to as Player. We have nine different use cases in the diagram, three primary
and six secondary. The three primary use cases are Finish Game, New Game, and Make
Move. The six secondary use cases are View Question Accuracy, Rematch, Quit, Create
Game, Enter Question Answer, and Select Symbol Location. Surrounding the different
use cases is the system boundary, which is labeled “Tic-Tac-Math Game”. Our Use Case
diagram also uses <<includes>> and <<extends>> in order to show that use cases are
interacting with one another. For example, Create Game is a use case that builds on top
of, or extends, the functionality that is provided by New Game. Conversely, Enter
Question Answer is functionality that Make Move consists of, or includes.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Use Case Name: Make Move

Actors: Player

Description: The player selects to make a move on the tic-tac-toe board

Type: Primary and Essential

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Includes: Enter Question Answer, Select Symbol Location

Extends: None

Cross-refs: Software requirements

Uses cases: Enter Question Answer, Select Symbol Location

Use Case Name: New Game

Actors: Player

Description: Player decides to start a new game of Tic-Tac-Math

Type: Primary and Essential

Includes: None

Extends: None

Cross-refs: None

Use cases: Create Game

Use Case Name: Finish Game

Actors: Player

Description: Player decides to no longer continue playing Tic-Tac-Math

Type: Primary and Essential

Includes: View Question Accuracy

Extends: None

Cross-refs: None

Use cases: View Question Accuracy, Rematch, Quit

Use Case Name: View Question Accuracy

Actors: Player

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Description: The player’s question accuracy is displayed

Type: Secondary and Essential

Includes: None

Extends: None

Cross-refs: None

Use cases: None

Use Case Name: Rematch

Actors: Player

Description: Player decides to continue playing Tic-Tac-Math against their opponent

Type: Secondary and Essential

Includes: None

Extends: Finish Game

Cross-refs: None

Use cases: None

Use Case Name: Quit

Actors: Player

Description: Player decides to no longer continue playing Tic-Tac-Math against their
opponent

Type: Secondary and Essential

Includes: None

Extends: Finish Game

Cross-refs: None

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Use cases: None

Use Case Name: Create Game

Actors: Player

Description: A new game is started, resetting all underlying data

Type: Secondary and Essential

Includes: None

Extends: New Game

Cross-refs: None

Use cases: None

Use Case Name: Enter Question Answer

Actors: Player

Description: Player enters their answer to the generated math question

Type: Secondary and Essential

Includes: None

Extends: None

Cross-refs: None

Use cases: None

Use Case Name: Select Symbol Location

Actors: Player

Description: Player selects the location on the board where they would like to place
their symbol

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Type: Secondary and Essential

Includes: None

Extends: None

Cross-refs: None

Use cases: None

Class Diagram

Class diagrams are used to model attributes and methods of classes and the
relationships between them. Each class is represented by a box with three components:
the class name in the top box, attributes in the middle box, and methods in the bottom. It
is important to note that attributes and methods are sometimes omitted. For the attributes
and methods, the + prefix is used to indicate that it is a public attribute or method,
meaning it can be accessed by anyone. It is also important to note that attributes of a class
that are objects are represented by composition instead, which is signified by a closed
black diamond head.

Our class diagram below begins with the Game class, which is responsible for
maintaining the state of the entire game. The game class consists of Player 1’s ID, Player
2’s ID, and is composed of a Board object. The Board class is responsible for managing
the state of the Tic-Tac-Toe board specifically. The Board class is composed of nine
Square objects. The Square objects have a fairly simple job, and that is to manage the
state of an individual square on the Tic-Tac-Toe board.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Tic-Tac-Math Class Diagram

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Class Dictionary:

Game:

- Attributes:
- player1ID: represents the identifier, “X”, for the first player
- player2ID: represents the identifier, “O”, for the second player
- Composed of one board object

- Methods:
- startGame: starts a new game with a fresh game board
- endGame: clears the game board and takes the users back to the landing

page
- rematch: clears the board and starts another game with the same two

opponents
- playerTurn: returns the identifier of the player whose turn it is
- makeMove: given the player identifier and the x and y coordinates of the

square, it will start the sequence of generating a new math problem,
prompting the user for an answer, and setting the symbol on the board.

- checkProblemAnswer: given the multiplicand, multiplier, and the user’s
answer, it determines if the user’s answer is correct.

- generateMathProblem: generates a random math problem and returns a
pair of integers, the first being the multiplicand and the second being the
multiplier. The two numbers are between zero and ten.

Board:

- Attributes:
- Composed of nine Square objects

- Methods:
- squareIsEmpty: given the x and y coordinates of the square, returns true if

it is empty and false otherwise.
- boardIsEmpty: returns true if no squares in the board have a symbol, false

otherwise.
- setSquareSymbol: given the x and y coordinates of the square and the

player’s identifier, set’s the symbol based on the value of the player
identifier.

- clearBoard: clears all symbols from the board.
- hasWinner: determines if there is currently a winner on the board based

on the board’s current state.
- boardIsFull: returns true if all squares in the board have a symbol

associated with them, return false otherwise.

Square:

- Attributes:
- playerID: integer representing the player who selected this square. The

identifier is what is used to determine the symbol

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



- Methods:
- setID: sets the identifier for the square, which in turn sets the square’s

symbol
- getID: gets the identifier for the square, which is effectively getting the

symbol for the square

Representative Scenarios

The following scenarios contain sequence diagrams. A sequence diagram is a
class and object diagram that describes the structure of the system. Specifically, it models
how objects send messages to each other. A lifeline in a sequence diagram consists of two
parts: a box representing an object labeled with the type of the object, and a vertical
dashed line representing the lifetime of the object. In sequence diagrams, sometimes we
have alternate roles, which are roles that are not covered by software objects. Alternate
roles are represented by stick figures instead of a box. An activation bar is a rectangle on
a lifeline, and it represents an object performing an operation. The bottom of an activation
bar represents the end of the operation. Messages passed between objects are called call
messages, and these are represented by arrows. Synchronous messages, the ones that the
following diagrams will use, have a solid arrow head and it means the caller waits for a
response. The following diagrams also take advantage of sequence fragments, which are a
frame that encloses part of the diagram. An opt frame only runs certain conditions, an alt
frame means there are multiple versions of an operation, but only one of which runs, and
the loop frame runs a fragment possibly multiple times.

Scenario 1: A player creates and starts a new Tic-Tac-Math game by launching the
webpage and startGame() is automatically triggered, making the game immediately
available.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Scenario 2: A player makes a move on the board. The game generates a math problem
with a multiplicand and a multiplier, then displays these values to the player in the form
of Multiplicand x Multiplier. When the question is answered by the user, the game will
check for the validity of the response and only allow the square to be claimed if the
question was answered correctly.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Scenario 3: A player claims the last square and ends the game. Continuing from the
events shown in Scenario 2, the game will end if the last square is claimed. When the last
square is claimed, the game will check if there are any winners or if the game was a tie.

State Diagram

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



A state diagram is a variation on finite automata. This means that the system has a
state which can change if a certain event occurs. In this context, state is just an abstraction
of the system’s attributes. An event is just something that occurs at any point in time.
State is represented by rounded rectangles and events are represented by labeled arrows.
In a state diagram, the states can actually have actions which can be performed while in
that state. There are three main types of actions: entry occurs when transitioning into the
state, do is performed continuously while in the state, and exit occurs when transitioning
out of the state. Actions are labeled with the format event/action.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



5 Prototype

The Tic-Tac-Math prototype currently functions as intended. The prototype allows
users to access a landing page, which when the “Start Game” button is pressed, will
navigate them to a Tic-Tac-Toe board. The prototype allows Player 1, who is
automatically given X, to make their first move on the board. When their move is
selected, a text box will appear on the screen and prompt the user to enter their answer to
the given math problem. From there, the game will place your respective symbol on the
board. This repeats for both players until there is either a winner or there is a tie. When
the game is over, the prototype displays either the winner or if it was a tie underneath the
Tic-Tac-Toe board. At any point in the game, the users have the choice to clear the board
and start the game over again. Players' statistics of correctly answered questions are
tracked over the course of the round and return to the default 100% when the board is
reset.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



5.1 How to Run Prototype

Running the Tic-Tac-Math prototype is incredibly simple. All the user needs to do
is follow this link: https://jakecorrenti.github.io/tictacmath/. The link will take you to the
landing page for Tic-Tac-Math, and from there all you have to do is have fun! There is no
additional system configuration or plugins required in order to play Tic-Tac-Math.
Additionally, assuming the user has access to a Web Browser and an internet connection,
there are no specific OS or networking constraints.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

https://jakecorrenti.github.io/tictacmath/


5.2 Sample Scenarios

The following is a scenario where Player 1, who represents the symbol X, will be
the winner of the game. First, the users navigate to the landing page. When they get
to the landing page, they select the “Start Game” button, which takes them to the
game board.

Tic-Tac-Math landing page

Navigated to the Tic-Tac-Math game board after pressing “Start Game”

Player 1 is now able to select where they want to put their X symbol. The player
selects the square they want to put the symbol, and a pop-up will show up asking for

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



user input. The user will then input their answer for the problem.

Tic-Tac-Math prompting for the user’s answer to the generated question

User inputs answer for problem

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



After the user inputs their answer to the problem, the game will place their
symbol in the box they had selected. The game will then alternate to the next player’s
turn.

Player 1 input the correct answer to the problem. Now it is Player 2’s turn.

Player 1 and Player 2 will alternate taking turns until either the game ends in a tie
or a win. In this case, Player 1 is the successful opponent.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



6 References

Start of your text.

[1] "IEEE Guide for Software Requirements Specifications," in IEEE Std 830-1984 ,
vol., no., pp.1-26, 10 Feb. 1984, doi: 10.1109/IEEESTD.1984.119205.

[2] “Tic-Tac-Math,” jakecorrenti.github.io. https://jakecorrenti.github.io/tictacmath/
(accessed Nov. 21, 2023).

[3] “Project Background,” tic-tac-math. https://jakecorrenti.github.io/tic-tac-math/
(accessed Nov. 21, 2023).

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



7 Point of Contact

For further information regarding this document and project, please contact Prof. Daly at
University of Massachusetts Lowell (james_daly at uml.edu). All materials in this
document have been sanitized for proprietary data. The students and the instructor
gratefully acknowledge the participation of our industrial collaborators.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM


